2026/02/04 22:48 1/4 PBtoWS - Procesos: Guia Rapida de implementacion de la Arquitectura Backend

PBtoWS - Procesos: Guia Rapida de
implementacion de la Arquitectura Backend

Este capitulo contiene informacidn relacionada con el proceso de creacién de componentes aplicando
la arquitectura propuesta en el desarrollo backend. El objetivo de esta seccién es centrar al
desarrollador en los aspectos fundamentales que debe tener presente al crear componentes que
seran expuestos en servicios SOAP Powerbuilder. Tener presente que sélo se explicara el proceso de
implementacion de la arquitectura y se excluiran los demas procesos asociados a la creacion. Para
mas informacién favor consultar los pasos del Check List Component

Paso 1: Creacion del Proyecto

El primer paso consiste en definir la estructura del repositorio del componente. La informacién
relacionada oncesta actividad puede ser consultada en el siguiente link Crear Componente

Paso 2: Establecer la Clase Transaccion Proyecto

Una vez creada la estructura del componente el siguiente paso consiste en redefinir la clase que
mapeara las conexiones de la base de datos. Esto es necesario ya que la transaccidon desempena un
papel fundamental para el procesameinto de la informacion. La clase encargada de ese proceso es
n_cst_transaction y esta en la libreria sf00Ocore_object.pbl. Ubiquese en el objeto application del
proyecto y presione el botono Additional Properties para desplegar la ventana de propiedades
adicionales del proyecto luego seleccione la pestana Variable Types y en el campo SQLCA cambie
el valor transaction por n_cst_transaction aplique los cambios y presione el botono Ok. De esta
forma ya quedara definida la clase transaction del componente.

Paso 3: Crear las Clases Base del Componente

El siguiente paso consiste en definir las clases base de operacion del componente las cuales deben
ser extendidas (heredadas) del paquete de Resolucidn y Orquestacion de Servicios de la sigueinte
forma:

e Extender la clase n_cst_service para crear la clase de invocacion de servicios

» Extender la clase n_cst_controller_process para crear los controladores que seran utilizados
por las clases invocadoras n_cst_service

e Extener la clase n_cst_model para implementar la logico del negocio del componente, es decir
en estas clases se generara el cddigo fuente.

Nota: Tener presente que las clases invocadoras y controladoras deben agregarse a la libreria
sf(XX)controller (xxxxxxxx).pbl y las clases del modelo 6 I6gica del negocio debben ser agregadas a
la libreria sf(XX)model (xxxxxxxx).pbl.

A continuacion se visualiza una imagen de ejemplo con la implementacién de las clases base (tener

Wiki - http://wiki.adacsc.co/

http://wiki.adacsc.co/doku.php?id=ada:tips:sicoferp:general:pbtows:framework:arquitectura:backend
http://wiki.adacsc.co/doku.php?id=ada:tips:sicoferp:general:pbtows:procesos:checklistcomponet
http://wiki.adacsc.co/doku.php?id=ada:tips:sicoferp:general:pbtows:procesos:createcomponet
http://wiki.adacsc.co/doku.php?id=ada:tips:sicoferp:general:pbtows:framework:arquitectura:backend#resolucion_y_orquestacion_de_servicios

Last

;ggg;géllz ada:tips:sicoferp:general:pbtows:procesos:guiarapidacomponente http://wiki.adacsc.co/doku.php?id=ada:tips:sicoferp:general:pbtows:procesos:guiarapidacomponente&rev=1565636389

18:59

presente el numero asociado a cada clase para identificar el tipo)

0 NER TRIVV_SANIGAR T e IS JRASS JIRANT AU TS JUAL
BREY 1200 oo (¢ adalscofscof pbtons Voca b
=) Eu wsm} _login. pl:-l (D: '\;;DA \SICOF\SICOF PBto!
| I: . ws00_login

-y = ws00_login
; li:-"-_t‘j n_ws00_login 1
—-=\ sfo0controller_login.pbl (D:\ADA\SICOF\SIC
: n_cst_controller_login
n_cst_service_login 2
Omodel_login.pbl (D:\ADA\SICOF\SICOF
- E dsf_status_login_sessions
dsg_company_session_available
=| dsg_company_subsidiary_user
=| dsg_dependendas_usuario

[#]- . = | dsg_login_session

-, & n_cst_login 4
:I =i s‘FGEIc-::re _object.pbl (D:\ADA\SICOF\SICOF
+-2), sf00core_transaction.pbl (D:\ADA\SICOF\SI
+)- B\ sf0Ocore_proxy_company.pbl (D:\ADA\SICC

-3
mmmn S Geo

1. Clase Lanzadora: Es generada automaticamente al crear el proyecto en ella se registran los
metodos que seran expuestos en el servicio.

2. Clase Invocadora: Es la clase que va a ser invocada por la Clase Lanzadora, crea los
controladores y lanza los métodos que inician los procesos.

3. Clase Controladora: Este tipo de clases realizan validaciones, provven metodos de utilidades
e invocan las clases de la l6gica del negocio.

4. Clase de Logica del Negocio: Contiene el cédigo powerbuilder de los procesos del ERP.

Paso 4: Modelo de implementacion de invocacion por capas

A continuacion se explica con ejemplos en imagenes el modelo de implementacion de invocacion por
las capas del framework aplicando la arquitectura propuesta. El componente de referencia es el login.

Modelo de implementacidn: Clase Lanzadora

El modelo debe implementar invocacion dinamica por eventos, por lo tanto la clase lanzadora debe
invocar el evento factory launch_event y recibe el nombre de la clase invocadora, el evento de
invocacion, parametros de configuracién formato json, datos de invocacion (solo si lo requiere el
servicio y el método de autenticacion de servicio.

http://wiki.adacsc.co/ Printed on 2026/02/04 22:48

2026/02/04 22:48 3/4 PBtoWS - Procesos: Guia Rapida de implementacion de la Arquitectura Backend

| IR TEE_FUGE | U O3 AR [1SS Suny

& SIOOF WS (D VADA S \SICOF PEIBWS\Lac: _ L
5 SICOF PEISINS [D:ADA|SICOF BICOF PRI Lotz f o | | ws_jogin { string as_config) retrrs string . !

#-, () sieof_phiows_core (ds\ada'sicofisieof phbiovws)
§-, @ we0D_rompany (d-\ada\sienfsiend pbtowesboe|
= -;§ wsll_logn [d:\ads \sco Mgcal phtows Yocalbri I
-1 w=00_login.phl {D:\ADRSIOOF\SICOF Pl
+-, [wsD0_jogin
el w00 _login
£~y % n_wsdd_logn
B, sfdcontroler_logn phl (D:WOAISICORSIC |/ Description: Process us rediza e inicio de sesidn
£ 5 15 n_cst_controller_login
& n_cst_pervoe_logn

Copyright 2018 ADA, Inc. Al rights reserved

Argumenta: as_confi - Contiens los parametrea del inida de sesion keginpasswand

" g
: T — N
Lk 52:" el _login,phl (D) WDASICOF SI00F ris: Cadera que indica & resultade del inico de sesiin, |
£ dsf_status_login_pessions
#-,| 2| dag_rompany_session_asvalable I Auithor: ADA - carlos, torres Bada. oo
¥, 2| t0_romparty_s.baidary_user Diahe: 09:56 a.m, jueves, 24 de mayo de 2018
+ | 2| d50_dependencas_usuanc
-, [2] deg_login_session
-, (5 nocst_login n_cet_fachary luo_laundh
+-H sf0core_object pbl (D WADASICOF SICOF lup_launch = Create n_gst_factory L
B sfcore_transaction.pil (Do ADA'SICOFS] | TR0 ba_taundh eve ¢ factory_launch_eventi'n_cat_service_logi', ‘ue_login', as_config, lua_launch.ics_na_argument_requined, luo_launch.xcs_oustom_acress_validatior)

+- B sf0core_proxy _companry.pbl (D:ADASIO!

Consideraciones

* Los parametros de entrada y salida son string en formato json.

* el parametro as_data sera requerido dependendiendo de la implementacién de los procesos de
la I6gica del negocio por lo tanto no siempre es obligatorio.

* la cadena de definicion de la clase invocadora y el evento de invocacion deben ingresarse en
minusculas.

Modelo de implementacion: Clase Invocadora

El modelo debe implementar en el evento invocado la inicializacidn del controlador principal y debe
recibir los parametros inicializados para la ejecucion de los procesos soportados. Los argumentos
inicializados automaticamente son:

* iuo_json_config: Clase json que contiene los parametros de configuracion del servicios EJ
contiene el atributo token_session

iuo_json_data: Clase json (opcional) que contiene los parametros asociados a la ejecucién de los
procesos soportados.

iuo_msg: Clase que contiene los mensajes del sistema.

its_db: Clase que contiene la conexidén de la base de datos del cliente.

SQLCA: conexidén genérica a la base de datos de configuracion.

De igual forma debe asegurar que el resultado del proceso debe ser devuelto en un objeto tipo
n_cst_return para luego convertirlo en una cadena en formato json que debe ser asignada a la
variable is_return para cual es la que siempre se devuelve en la Resolucién y Orquestacién de
Servicios.

A continuacién se visualiza la imagen de la implementacién del Componente Login.

Wiki - http://wiki.adacsc.co/

http://wiki.adacsc.co/doku.php?id=ada:tips:sicoferp:general:pbtows:framework:arquitectura:backend#resolucion_y_orquestacion_de_servicios
http://wiki.adacsc.co/doku.php?id=ada:tips:sicoferp:general:pbtows:framework:arquitectura:backend#resolucion_y_orquestacion_de_servicios

Last

ggggigéllz ada:tips:sicoferp:general:pbtows:procesos:guiarapidacomponente http://wiki.adacsc.co/doku.php?id=ada:tips:sicoferp:general:pbtows:procesos:guiarapidacomponente&rev=1565636389

18:59

B S1CCF PBAMS (D AT ST OF {5 OO PE b IS ez [.
-, (@) seaf_phiows_core (d:\ada \sicaPgcaf pblovs) A st _service_ogn bl | = e Jogin (] retums [nane] -
-y llﬂ. ws00_company (d-\adal\scofigoof phéows oo
. I wesi0_login {d:\ada \scoPgicof pbiovs Yocalbr
B ws00_login.pbl {0z \ADA\SICOFSICOF PRt
#-, [ws00_login
ek wE00_login
-, i) n_ws00_ogin
B, sf0controller_logn.pbl (D ADASICOFEIC
P i n_csi_coniraller_logn
-, =) n_cst_genvice_login
=+ sf00madel_ogin. pbl (D: WADASI0OFSICOR
,E dsf_stabus_login_sessions
+1-, [deg_company_sesson_availsbie
; E dsg_company_subsidiary_user

Anguinents: Mo Aplca

Refturns: Mo Aplica

Author: ADA - carlos. torres Bada.mo
Dafte: 10:39 a.m. jueves, 24 de mayo de 2018
o2 deg_dependencias_usuario
o[deg_login_session
-, i n_e=t_login r_cet_controlier_jogin luo_controlier
Mk sF0core_object pbl ([D:\ADA\SICORSICOE | n_cst_json luo_jeon_return
i ik sF00core_wransacton.pbl (D1\ADAISICORY) | M-fetretum o rebum
) Ek sf00core_prowy_company.pbl (DiADANSICC o e e e e e e e e e e B S L s e L L
¥, () weD0_usuario (d:\ada coPisicof pbioves Yocall echar 9179 4. m.
-, (&) ws0_profie (d:\ada\sicoflsoof phiawsYocallk alzacian de los abjetos de procesa
-, (8 wsD)_uslites (d-\adasicof\sicaf phtovsYocaly
£ (3 we0_storage_bag [ada'eioficof phtows! = ua_ooniroller.of_loginiiuo_json_config, iuo_mg, its_dt)
-, (5 ws00_oud (d:adawicofigicof ptewsNocalibr: = lo_retum.of_encapsule_json_retum()
-, (8 wa00_proxies (d:\ada'mcofeicof phlowsYocal | is_return =uo_feon_return.ta_string()
“-o(W) test sicofobtows (d:\ada\sicof\sicof ob

ate n_cst_controler_login

Consideraciones

e En lo posible evite el uso de variables de instancia en los controladores.
¢ No utilizar la variable SQLCA para realizar transacciones.
* No implementar légica de negocio en las clases n_cst_service

From:
http://wiki.adacsc.co/ - Wiki

Permanent link:
http://wiki.adacsc.co/doku.php?id=ada:tips:sicoferp:general:pbtows:procesos:guiarapidacomponente&rev=1565636389

Last update: 2019/08/12 18:59

http://wiki.adacsc.co/ Printed on 2026/02/04 22:48

http://wiki.adacsc.co/
http://wiki.adacsc.co/doku.php?id=ada:tips:sicoferp:general:pbtows:procesos:guiarapidacomponente&rev=1565636389

	PBtoWS - Procesos: Guía Rápida de implementación de la Arquitectura Backend
	Paso 1: Creación del Proyecto
	Paso 2: Establecer la Clase Transacción Proyecto
	Paso 3: Crear las Clases Base del Componente
	Paso 4: Modelo de implementación de invocación por capas
	Modelo de implementación: Clase Lanzadora
	Consideraciones

	Modelo de implementación: Clase Invocadora
	Consideraciones

