
2026/02/04 22:48 1/4 PBtoWS - Procesos: Guía Rápida de implementación de la Arquitectura Backend

Wiki - http://wiki.adacsc.co/

PBtoWS - Procesos: Guía Rápida de
implementación de la Arquitectura Backend

Este capitulo contiene información relacionada con el proceso de creación de componentes aplicando
la arquitectura propuesta en el desarrollo backend. El objetivo de esta sección es centrar al
desarrollador en los aspectos fundamentales que debe tener presente al crear componentes que
serán expuestos en servicios SOAP Powerbuilder. Tener presente que sólo se explicara el proceso de
implementación de la arquitectura y se excluirán los demás procesos asociados a la creación. Para
más información favor consultar los pasos del Check List Component

Paso 1: Creación del Proyecto

El primer paso consiste en definir la estructura del repositorio del componente. La información
relacionada oncesta actividad puede ser consultada en el siguiente link Crear Componente

Paso 2: Establecer la Clase Transacción Proyecto

Una vez creada la estructura del componente el siguiente paso consiste en redefinir la clase que
mapeará las conexiones de la base de datos. Esto es necesario ya que la transacción desempeña un
papel fundamental para el procesameinto de la información. La clase encargada de ese proceso es
n_cst_transaction y está en la libreria sf00core_object.pbl. Ubiquese en el objeto application del
proyecto y presione el botono Additional Properties para desplegar la ventana de propiedades
adicionales del proyecto luego seleccione la pestaña Variable Types y en el campo SQLCA cambie
el valor transaction por n_cst_transaction aplique los cambios y presione el botono Ok. De esta
forma ya quedará definida la clase transaction del componente.

Paso 3: Crear las Clases Base del Componente

El siguiente paso consiste en definir las clases base de operación del componente las cuales deben
ser extendidas (heredadas) del paquete de Resolución y Orquestación de Servicios de la sigueinte
forma:

Extender la clase n_cst_service para crear la clase de invocación de servicios
Extender la clase n_cst_controller_process para crear los controladores que serán utilizados
por las clases invocadoras n_cst_service
Extener la clase n_cst_model para implementar la logico del negocio del componente, es decir
en estas clases se generará el código fuente.

Nota: Tener presente que las clases invocadoras y controladoras deben agregarse a la libreria
sf(XX)controller_(xxxxxxxx).pbl y las clases del modelo ó lógica del negocio debben ser agregadas a
la libreria sf(XX)model_(xxxxxxxx).pbl.

A continuación se visualiza una imagen de ejemplo con la implementación de las clases base (tener

http://wiki.adacsc.co/doku.php?id=ada:tips:sicoferp:general:pbtows:framework:arquitectura:backend
http://wiki.adacsc.co/doku.php?id=ada:tips:sicoferp:general:pbtows:procesos:checklistcomponet
http://wiki.adacsc.co/doku.php?id=ada:tips:sicoferp:general:pbtows:procesos:createcomponet
http://wiki.adacsc.co/doku.php?id=ada:tips:sicoferp:general:pbtows:framework:arquitectura:backend#resolucion_y_orquestacion_de_servicios


Last
update:
2019/08/12
18:59

ada:tips:sicoferp:general:pbtows:procesos:guiarapidacomponente http://wiki.adacsc.co/doku.php?id=ada:tips:sicoferp:general:pbtows:procesos:guiarapidacomponente&rev=1565636389

http://wiki.adacsc.co/ Printed on 2026/02/04 22:48

presente el numero asociado a cada clase para identificar el tipo)

Clase Lanzadora: Es generada automáticamente al crear el proyecto en ella se registran los1.
metodos que serán expuestos en el servicio.
Clase Invocadora: Es la clase que va a ser invocada por la Clase Lanzadora, crea los2.
controladores y lanza los métodos que inician los procesos.
Clase Controladora: Este tipo de clases realizan validaciones, provven metodos de utilidades3.
e invocan las clases de la lógica del negocio.
Clase de Logica del Negocio: Contiene el código powerbuilder de los procesos del ERP.4.

Paso 4: Modelo de implementación de invocación por capas

A continuación se explica con ejemplos en imagenes el modelo de implementación de invocación por
las capas del framework aplicando la arquitectura propuesta. El componente de referencia es el login.

Modelo de implementación: Clase Lanzadora

El modelo debe implementar invocacion dinamica por eventos, por lo tanto la clase lanzadora debe
invocar el evento factory_launch_event y recibe el nombre de la clase invocadora, el evento de
invocación, parametros de configuración formato json, datos de invocación (solo si lo requiere el
servicio y el método de autenticación de servicio.



2026/02/04 22:48 3/4 PBtoWS - Procesos: Guía Rápida de implementación de la Arquitectura Backend

Wiki - http://wiki.adacsc.co/

Consideraciones

Los parametros de entrada y salida son string en formato json.
el parametro as_data será requerido dependendiendo de la implementación de los procesos de
la lógica del negocio por lo tanto no siempre es obligatorio.
la cadena de definición de la clase invocadora y el evento de invocacion deben ingresarse en
minusculas.

Modelo de implementación: Clase Invocadora

El modelo debe implementar en el evento invocado la inicialización del controlador principal y debe
recibir los parametros inicializados para la ejecución de los procesos soportados. Los argumentos
inicializados automaticamente son:

iuo_json_config: Clase json que contiene los parametros de configuración del servicios EJ
contiene el atributo token_session
iuo_json_data: Clase json (opcional) que contiene los parametros asociados a la ejecución de los
procesos soportados.
iuo_msg: Clase que contiene los mensajes del sistema.
its_db: Clase que contiene la conexión de la base de datos del cliente.
SQLCA: conexión genérica a la base de datos de configuración.

De igual forma debe asegurar que el resultado del proceso debe ser devuelto en un objeto tipo
n_cst_return para luego convertirlo en una cadena en formato json que debe ser asignada a la
variable is_return para cual es la que siempre se devuelve en la Resolución y Orquestación de
Servicios.

A continuación se visualiza la imagen de la implementación del Componente Login.

http://wiki.adacsc.co/doku.php?id=ada:tips:sicoferp:general:pbtows:framework:arquitectura:backend#resolucion_y_orquestacion_de_servicios
http://wiki.adacsc.co/doku.php?id=ada:tips:sicoferp:general:pbtows:framework:arquitectura:backend#resolucion_y_orquestacion_de_servicios


Last
update:
2019/08/12
18:59

ada:tips:sicoferp:general:pbtows:procesos:guiarapidacomponente http://wiki.adacsc.co/doku.php?id=ada:tips:sicoferp:general:pbtows:procesos:guiarapidacomponente&rev=1565636389

http://wiki.adacsc.co/ Printed on 2026/02/04 22:48

Consideraciones

En lo posible evite el uso de variables de instancia en los controladores.
No utilizar la variable SQLCA para realizar transacciones.
No implementar lógica de negocio en las clases n_cst_service

From:
http://wiki.adacsc.co/ - Wiki

Permanent link:
http://wiki.adacsc.co/doku.php?id=ada:tips:sicoferp:general:pbtows:procesos:guiarapidacomponente&rev=1565636389

Last update: 2019/08/12 18:59

http://wiki.adacsc.co/
http://wiki.adacsc.co/doku.php?id=ada:tips:sicoferp:general:pbtows:procesos:guiarapidacomponente&rev=1565636389

	PBtoWS - Procesos: Guía Rápida de implementación de la Arquitectura Backend
	Paso 1: Creación del Proyecto
	Paso 2: Establecer la Clase Transacción Proyecto
	Paso 3: Crear las Clases Base del Componente
	Paso 4: Modelo de implementación de invocación por capas
	Modelo de implementación: Clase Lanzadora
	Consideraciones

	Modelo de implementación: Clase Invocadora
	Consideraciones




