2026/02/04 09:59 1/3 Buenas practicas de desarrollo de software: Principios SOLID

Buenas practicas de desarrollo de software:
Principios SOLID

Esta seccidn presenta una introduccion a los 5 principios SOLID los cuales ayudan a desarrollar
sotfware de calidad.

Cuando se trata del disefio y desarrollo de aplicaciones, los 'Principios SOLID' son un conjunto de
conceptos esenciales que debes tener en tu repertorio como fundamentos clave en la arquitectura y
creacién de software.

SOLID es un acrénimo creado por Michael Feathers, que se basa en los principios de la programacién
orientada a objetos compilados por Robert C. Martin en su articulo de 2000, titulado 'Design Principles
and Design Patterns'. Estos principios sientan las bases para el desarrollo de software de alta calidad
y mantenible en el mundo de la programacién orientada a objetos”.

Los 5 principios SOLID de disefio de aplicaciones de software son:

¢ S - Single Responsibility Principle (SRP)
O - Open/Closed Principle (OCP)

L - Liskov Substitution Principle (LSP)

| - Interface Segregation Principle (ISP)
D - Dependency Inversion Principle (DIP)

S - Principio de responsabilidad unica

El Principio de Responsabilidad Unica establece que una clase debe desempefiar una Unica funcién y,
en consecuencia, tener un solo motivo para cambiar.

Para expresar este principio en términos mas técnicos: Solo deberia ser posible que un cambio
potencial, como alteraciones en la ldgica de la base de datos o en la ldgica de registro, afecte la
especificacion de una clase.

En otras palabras, si una clase representa una entidad o un contenedor de datos, como una clase
“Libro” o “Estudiante,” y contiene campos relacionados con esa entidad, solo deberia requerir
modificaciones cuando el modelo de datos subyacente cambie.

Es fundamental adherirse al principio de responsabilidad Unica por varias razones. En primer lugar, en
proyectos donde multiples equipos pueden trabajar en la misma clase por diversas razones, no seguir
este principio podria resultar en médulos incompatibles.

En segundo lugar, facilita el seguimiento de versiones. Por ejemplo, si observamos cambios en un
archivo en las confirmaciones de GitHub y seguimos el Principio de Responsabilidad Unica, podemos
inferir que esos cambios estan relacionados con el almacenamiento o cuestiones vinculadas a la base
de datos.

Ademas, este enfoque también reduce los conflictos de fusion. Los conflictos suelen surgir cuando
diferentes equipos modifican el mismo archivo, pero al adherirse al Principio de Responsabilidad
Unica, los conflictos se minimizan, ya que los archivos solo tienen un motivo para cambiar, lo que

Wiki - http://wiki.adacsc.co/



Last update:

2023/11/07 14:50 ada:howto:sicoferp:factory:solid http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:solid&rev=1699368627

simplifica la resolucién de conflictos.

O - Principio de apertura y cierre

El principio de apertura y cierre establece que las clases deben ser abiertas a la extension y cerradas
a la modificacion.

La 'modificacién' se refiere a cambiar el cddigo de una clase existente, mientras que la 'extension'
implica agregar nuevas funcionalidades. En resumen, este principio promueve la idea de que
debemos poder introducir nuevas funciones sin necesidad de alterar el cddigo preexistente de una
clase. Esto se debe a que cada vez que modificamos el cddigo existente, corremos el riesgo de
introducir posibles errores. Por lo tanto, es aconsejable evitar tocar el cédigo de produccién que ya ha
sido probado y es confiable en su mayoria.

Puede preguntarse como es posible agregar nueva funcionalidad sin modificar la clase original. Por lo
general, esto se logra mediante el uso de interfaces y clases abstractas, que permiten extendery
agregar nuevas capacidades a las clases existentes sin cambiar su implementacién subyacente.

L - Principio de sustitucion de Liskov

El Principio de Sustitucidon de Liskov establece que las subclases deben ser intercambiables por sus
clases base.

En otras palabras, si la clase B es una subclase de la clase A, deberiamos poder utilizar un objeto de
la clase B en lugar de un objeto de la clase A en cualquier contexto, como un método que espera un
objeto de la clase A, sin experimentar resultados inesperados.

Este comportamiento es el esperado ya que cuando aplicamos la herencia, suponemos que la clase
hija hereda todas las caracteristicas de la clase madre. La clase hija puede extender el
comportamiento, pero nunca debe reducirlo.

Cuando una clase no cumple con este principio, puede llevar a errores inesperados y dificiles de
detectar en el cédigo.

| - Principio de segregacion de interfaces

La segregacién implica la separacion de elementos, y el Principio de Segregacion de Interfaces se
enfoca en la separacion de interfaces.

Este principio defiende que es preferible tener multiples interfaces especificas para los clientes en
lugar de una Unica interfaz general. La idea es no obligar a los clientes a implementar funciones que
no necesitan ni utilizaran.

http://wiki.adacsc.co/ Printed on 2026/02/04 09:59



2026/02/04 09:59 3/3 Buenas practicas de desarrollo de software: Principios SOLID

D - Principio de inversion de dependencia

El principio de inversion de dependencia establece que nuestras clases deben depender de interfaces
o0 clases abstractas en lugar de depender de clases y funciones concretas.

En su articulo de 2000, Robert C. Martin resume este principio de la siguiente manera:

..."Si el Principio de Apertura y Cierre establece el objetivo de la arquitectura orientada a objetos, el
Principio de Inversién de Dependencia establece el mecanismo principal”.

Estos dos principios estan estrechamente relacionados, y ya hemos aplicado este patron al discutir el
Principio de Apertura y Cierre.

El objetivo es que nuestras clases estén abiertas a la extensidn, por lo que reestructuramos nuestras
dependencias para que dependan de interfaces en lugar de depender de clases y funciones
concretas.

<Volver atras

1)

https://profile.es/blog/principios-solid-desarrollo-software-calidad/

From:
http://wiki.adacsc.co/ - Wiki

Permanent link:
http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:solid&rev=1699368627 3=~k

Last update: 2023/11/07 14:50

Wiki - http://wiki.adacsc.co/


http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:goodsoftwaredevelopmentpractices
https://profile.es/blog/principios-solid-desarrollo-software-calidad/
http://wiki.adacsc.co/
http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:solid&rev=1699368627

	Buenas prácticas de desarrollo de software: Principios SOLID
	S - Principio de responsabilidad única
	O - Principio de apertura y cierre
	L - Principio de sustitución de Liskov
	I - Principio de segregación de interfaces
	D - Principio de inversión de dependencia


