
2026/02/04 13:47 1/5 Repositorio de Código Fuente

Wiki - http://wiki.adacsc.co/

Repositorio de Código Fuente

En el mundo del desarrollo de software, la gestión eficaz del código fuente es crucial para el éxito de
cualquier proyecto. Un repositorio de código fuente centralizado proporciona un lugar seguro para
almacenar, organizar y colaborar en el desarrollo del código. Gitlab, una plataforma de gestión de
repositorios Git líder, ofrece una amplia gama de funciones para facilitar la colaboración y el control
de versiones del código.

En esta sección, se presenta la definición de un repositorio de código fuente para la empresa ADA,
utilizando Gitlab y el flujo de trabajo Gitflow.

Gitlab: La Plataforma Elegida

Gitlab se ha convertido en la plataforma de gestión de repositorios Git preferida por muchas
empresas debido a su conjunto completo de funciones, escalabilidad y facilidad de uso. Ofrece una
interfaz web intuitiva, herramientas integradas para la gestión de tareas, seguimiento de errores y
CI/CD (Integración Continua y Entrega Continua).

Flujo de Trabajo Gitflow: Estructurando el Desarrollo

El flujo de trabajo Gitflow es un modelo de ramificación ampliamente utilizado para organizar el
desarrollo de software en Git. Proporciona una estructura clara para crear, fusionar y eliminar ramas,
asegurando que los cambios de código estén bien definidos y sean rastreables.

Beneficios de la Implementación

La implementación de un repositorio de código fuente en Gitlab con el flujo de trabajo Gitflow para la
empresa ADA ofrece numerosos beneficios:

Gestión Centralizada del Código: Un único repositorio centralizado almacena todo el código
fuente del proyecto, facilitando el acceso y la colaboración entre los desarrolladores.
Control de Versiones Eficaz: Gitlab proporciona un historial completo de todos los cambios
realizados en el código, permitiendo a los desarrolladores retroceder a versiones anteriores si
es necesario.
Flujo de Trabajo Estructurado: El flujo de trabajo Gitflow guía a los desarrolladores en el
proceso de desarrollo, asegurando que los cambios se realicen de manera organizada y
eficiente.
Mejora de la Colaboración: Gitlab facilita la colaboración entre desarrolladores, permitiendo
la revisión y aprobación del código antes de su fusión en la rama principal.
Mayor Visibilidad y Transparencia: El repositorio centralizado proporciona una visión clara
del estado del proyecto y el progreso del desarrollo a todos los interesados.
Integración con CI/CD: Gitlab se integra perfectamente con herramientas de CI/CD,
permitiendo la automatización de pruebas, implementación y despliegue del código.

Last
update:
2024/04/17
13:51

ada:howto:sicoferp:factory:new-migracion-sicoferp:repository http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:new-migracion-sicoferp:repository&rev=1713361865

http://wiki.adacsc.co/ Printed on 2026/02/04 13:47

Flujo de trabajo - GitFlow ADA

El flujo de trabajo Gitflow es un modelo de ramificación que ayuda a los equipos a gestionar el
desarrollo y la colaboración de código de manera eficaz. Proporciona un enfoque estructurado para
crear, fusionar y eliminar ramas, asegurando que los cambios de código estén bien definidos y sean
rastreables.

A continuación se describen los elementos que hacen parte de ese flujo y como se utilizará en la
compañía siguiendo el estandar recomendado. Según el siguiente gráfico:

Ramas

El flujo de trabajo Gitflow utiliza varias ramas para organizar y gestionar el desarrollo del código:

master: La rama principal que representa la versión estable y lanzada del código. Esta rama
solo debe actualizarse con cambios de código probados y aprobados.
develop: La rama donde se lleva a cabo el desarrollo activo. Las características se ramifican
desde aquí y eventualmente se fusionan de nuevo en esta rama una vez que se completan y se
prueban a fondo.
feature: Ramas creadas desde develop para trabajar en características específicas o
correcciones de errores. Estas ramas deben tener nombres descriptivos que indiquen
claramente el propósito del trabajo que se está realizando.
release: Una rama creada desde develop para preparar una nueva versión. Esta rama se utiliza
para probar y finalizar la versión antes de fusionarla en master.
hotfix: Una rama creada directamente desde master para abordar errores o problemas críticos
en el código lanzado. Estas ramas deben crearse y fusionarse lo antes posible para minimizar el
impacto del problema en los usuarios.

2026/02/04 13:47 3/5 Repositorio de Código Fuente

Wiki - http://wiki.adacsc.co/

Definición de ramas para la fábrica

La empresa por varios años ha utilizado un repositorio svn para la gestión del código fuente de los
desarrollos. Teniendo presente ese enfoque, el personal actual y el flujo de los procesos actuales de
implementación de cambios, mejoras o nuevos desarrollos se hace esta definición de ramas en la
nueva migración.

master: Esta rama será la utilizada para almacenar el código fuente estable. Es similar a la
rama tags del anterior modelo svn utilizado en la compañía para las aplicaciones powerbuilder.
develop: En esta rama se acumulan las validaciones de parte del equipo de QA para
posteriormente liberar una versión. Es similar a la rama pre del anterior modelo svn utilizado en
la compañía.
feature: En esta rama se realizará la migración de las funcionalidades. Es similar a la rama
branches del anterior modelo svn utilizado en la compañía. Sin embargo tambien será utilizada
para validar la solucion antes de integrarla a develop.
release: Esta rama será la utilizada para las liberaciones en el ambiente de producción. Es
similar a la rama tags del anterior modelo svn utilizado en la compañía, pero su duración es
corta ya que una vez se integren los cambios a master y develop será eliminada.
hotfix: Rama utilizada para solución de errores en producción es similar al branches del modelo
anterior svn utilizado en la compañía pero su duración es corta ya que una vez se integren los
cambios a master y develop será eliminada.

Roles y Responsabilidades

El flujo de trabajo Gitflow define roles y responsabilidades para los miembros del equipo:

Mantenedores: Responsables de gestionar la rama master, asegurando su estabilidad y
calidad. Revisan las solicitudes de extracción de la rama release antes de fusionarlas en
master.
Desarrolladores: Trabajan en características y correcciones de errores, creando ramas de
develop y fusionándolas de nuevo después de su finalización. Deben seguir los estándares de
codificación y garantizar la calidad de su código.
Testers: Prueban los cambios de código en las ramas feature y release antes de fusionarlos en
develop o master. Deben identificar y reportar cualquier error o problema encontrado durante
las pruebas.

Definición de Roles y Responsabilidades

Al igual que las ramas del repositorio anterior, la empresa por varios años ha utilizado una estructura
simple de gestion de ramas la cual es branches para desarrolladores, trunk para qa y tags para
liberaciones en produccion. Teniendo presente ese enfoque, el personal actual y el flujo de los
procesos actuales de implementación de cambios, mejoras o nuevos desarrollos se hace esta
definición de roles en la nueva migración.

Mantenedores: Responsables de gestionar la rama master, asegurando su estabilidad y
calidad. Revisan las solicitudes de extracción de la rama release antes de fusionarlas en
master. Este rol puede ser asumido por el líder técnico del módulo o caracteristica que se va a
integrar.

Last
update:
2024/04/17
13:51

ada:howto:sicoferp:factory:new-migracion-sicoferp:repository http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:new-migracion-sicoferp:repository&rev=1713361865

http://wiki.adacsc.co/ Printed on 2026/02/04 13:47

Desarrolladores: Trabajan en características y correcciones de errores, creando ramas de
develop y fusionándolas de nuevo después de su finalización. Deben seguir los estándares de
codificación y garantizar la calidad de su código. Este rol es asignado a los desarrolladores que
realizarán la migración.
Testers: Prueban los cambios de código en las ramas feature y release antes de fusionarlos en
develop o master. Deben identificar y reportar cualquier error o problema encontrado durante
las pruebas. Este rol es asumido por el equipo de QA.

Plantilla CI

This file is a template, and might need editing before it works on your
project.
To contribute improvements to CI/CD templates, please follow the
Development guide at:
https://docs.gitlab.com/ee/development/cicd/templates.html
This specific template is located at:
#
https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/G
etting-Started.gitlab-ci.yml

This is a sample GitLab CI/CD configuration file that should run without
any modifications.
It demonstrates a basic 3 stage CI/CD pipeline. Instead of real tests or
scripts,
it uses echo commands to simulate the pipeline execution.
#
A pipeline is composed of independent jobs that run scripts, grouped into
stages.
Stages run in sequential order, but jobs within stages run in parallel.
#
For more information, see:
https://docs.gitlab.com/ee/ci/yaml/index.html#stages

stages: # List of stages for jobs, and their order of execution
 - build
 - test
 - deploy

build-job: # This job runs in the build stage, which runs first.
 stage: build
 script:
 - echo "Compiling the code..."
 - echo "Compile complete."

unit-test-job: # This job runs in the test stage.
 stage: test # It only starts when the job in the build stage completes
successfully.
 script:

2026/02/04 13:47 5/5 Repositorio de Código Fuente

Wiki - http://wiki.adacsc.co/

 - echo "Running unit tests... This will take about 60 seconds."
 - sleep 60
 - echo "Code coverage is 90%"

lint-test-job: # This job also runs in the test stage.
 stage: test # It can run at the same time as unit-test-job (in
parallel).
 script:
 - echo "Linting code... This will take about 10 seconds."
 - sleep 10
 - echo "No lint issues found."

deploy-job: # This job runs in the deploy stage.
 stage: deploy # It only runs when *both* jobs in the test stage complete
successfully.
 script:
 - echo "Deploying application..."
 - echo "Application successfully deployed."

Conclusión

La adopción de Gitlab como plataforma de gestión de repositorios Git y el flujo de trabajo Gitflow para
la empresa ADA proporcionará una base sólida para el desarrollo de software eficiente, colaborativo y
escalable. Esta combinación permitirá a ADA gestionar su código fuente de manera efectiva, mejorar
la colaboración entre equipos y acelerar el desarrollo de productos.

←Volver atrás

From:
http://wiki.adacsc.co/ - Wiki

Permanent link:
http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:new-migracion-sicoferp:repository&rev=1713361865

Last update: 2024/04/17 13:51

http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory
http://wiki.adacsc.co/
http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:new-migracion-sicoferp:repository&rev=1713361865

	Repositorio de Código Fuente
	Gitlab: La Plataforma Elegida
	Flujo de Trabajo Gitflow: Estructurando el Desarrollo
	Beneficios de la Implementación
	Flujo de trabajo - GitFlow ADA
	Ramas
	Definición de ramas para la fábrica
	Roles y Responsabilidades
	Definición de Roles y Responsabilidades

	Plantilla CI
	Conclusión

