2026/02/04 13:47 1/5 Repositorio de Cédigo Fuente

Repositorio de Codigo Fuente

En el mundo del desarrollo de software, la gestion eficaz del cédigo fuente es crucial para el éxito de
cualquier proyecto. Un repositorio de cddigo fuente centralizado proporciona un lugar seguro para
almacenar, organizar y colaborar en el desarrollo del codigo. Gitlab, una plataforma de gestion de
repositorios Git lider, ofrece una amplia gama de funciones para facilitar la colaboracién y el control
de versiones del cédigo.

En esta seccidn, se presenta la definicién de un repositorio de cddigo fuente para la empresa ADA,
utilizando Gitlab y el flujo de trabajo Gitflow.

Gitlab: La Plataforma Elegida

Gitlab se ha convertido en la plataforma de gestidon de repositorios Git preferida por muchas
empresas debido a su conjunto completo de funciones, escalabilidad y facilidad de uso. Ofrece una
interfaz web intuitiva, herramientas integradas para la gestion de tareas, seguimiento de errores y
CI/CD (Integracién Continua y Entrega Continua).

Flujo de Trabajo Gitflow: Estructurando el Desarrollo

El flujo de trabajo Gitflow es un modelo de ramificacién ampliamente utilizado para organizar el
desarrollo de software en Git. Proporciona una estructura clara para crear, fusionar y eliminar ramas,
asegurando que los cambios de cédigo estén bien definidos y sean rastreables.

Beneficios de la Implementacion

La implementacion de un repositorio de cddigo fuente en Gitlab con el flujo de trabajo Gitflow para la
empresa ADA ofrece numerosos beneficios:

» Gestion Centralizada del Cédigo: Un Unico repositorio centralizado almacena todo el cédigo
fuente del proyecto, facilitando el acceso y la colaboracion entre los desarrolladores.

» Control de Versiones Eficaz: Gitlab proporciona un historial completo de todos los cambios
realizados en el cddigo, permitiendo a los desarrolladores retroceder a versiones anteriores si
es necesario.

* Flujo de Trabajo Estructurado: El flujo de trabajo Gitflow guia a los desarrolladores en el
proceso de desarrollo, asegurando que los cambios se realicen de manera organizada y
eficiente.

» Mejora de la Colaboracion: Gitlab facilita la colaboracién entre desarrolladores, permitiendo
la revisidn y aprobacién del cédigo antes de su fusién en la rama principal.

* Mayor Visibilidad y Transparencia: El repositorio centralizado proporciona una vision clara
del estado del proyecto y el progreso del desarrollo a todos los interesados.

« Integracion con CI/CD: Gitlab se integra perfectamente con herramientas de CI/CD,
permitiendo la automatizacién de pruebas, implementacién y despliegue del cédigo.

Wiki - http://wiki.adacsc.co/

Last

;833;&/17 ada:howto:sicoferp:factory:new-migracion-sicoferp:repository http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:new-migracion-sicoferp:repository&rev=1713361865

13:51

Flujo de trabajo - GitFlow ADA

El flujo de trabajo Gitflow es un modelo de ramificacidn que ayuda a los equipos a gestionar el
desarrollo y la colaboracién de cédigo de manera eficaz. Proporciona un enfoque estructurado para
crear, fusionar y eliminar ramas, asegurando que los cambios de cédigo estén bien definidos y sean
rastreables.

A continuacién se describen los elementos que hacen parte de ese flujo y como se utilizara en la
companfia siguiendo el estandar recomendado. Segun el siguiente grafico:

O-
®
-
o

Ramas

El flujo de trabajo Gitflow utiliza varias ramas para organizar y gestionar el desarrollo del cédigo:

» master: La rama principal que representa la versidn estable y lanzada del cédigo. Esta rama
solo debe actualizarse con cambios de c6digo probados y aprobados.

» develop: La rama donde se lleva a cabo el desarrollo activo. Las caracteristicas se ramifican
desde aqui y eventualmente se fusionan de nuevo en esta rama una vez que se completan y se
prueban a fondo.

 feature: Ramas creadas desde develop para trabajar en caracteristicas especificas o
correcciones de errores. Estas ramas deben tener nombres descriptivos que indiquen
claramente el propdsito del trabajo que se esta realizando.

« release: Una rama creada desde develop para preparar una nueva version. Esta rama se utiliza
para probar y finalizar la versidn antes de fusionarla en master.

* hotfix: Una rama creada directamente desde master para abordar errores o problemas criticos
en el cédigo lanzado. Estas ramas deben crearse y fusionarse lo antes posible para minimizar el
impacto del problema en los usuarios.

http://wiki.adacsc.co/ Printed on 2026/02/04 13:47

2026/02/04 13:47 3/5 Repositorio de Cédigo Fuente

Definicion de ramas para la fabrica

La empresa por varios afios ha utilizado un repositorio svn para la gestién del cddigo fuente de los
desarrollos. Teniendo presente ese enfoque, el personal actual y el flujo de los procesos actuales de
implementacién de cambios, mejoras o nuevos desarrollos se hace esta definicién de ramas en la
nueva migracion.

e master: Esta rama sera la utilizada para almacenar el cédigo fuente estable. Es similar a la
rama tags del anterior modelo svn utilizado en la compafiia para las aplicaciones powerbuilder.

» develop: En esta rama se acumulan las validaciones de parte del equipo de QA para
posteriormente liberar una versién. Es similar a la rama pre del anterior modelo svn utilizado en
la compafia.

 feature: En esta rama se realizara la migracion de las funcionalidades. Es similar a la rama
branches del anterior modelo svn utilizado en la compafiia. Sin embargo tambien sera utilizada
para validar la solucion antes de integrarla a develop.

* release: Esta rama sera la utilizada para las liberaciones en el ambiente de produccién. Es
similar a la rama tags del anterior modelo svn utilizado en la compafiia, pero su duracién es
corta ya que una vez se integren los cambios a master y develop serd eliminada.

« hotfix: Rama utilizada para soluciéon de errores en produccion es similar al branches del modelo
anterior svn utilizado en la compafiia pero su duracion es corta ya que una vez se integren los
cambios a master y develop sera eliminada.

Roles y Responsabilidades

El flujo de trabajo Gitflow define roles y responsabilidades para los miembros del equipo:

* Mantenedores: Responsables de gestionar la rama master, asegurando su estabilidad y
calidad. Revisan las solicitudes de extraccion de la rama release antes de fusionarlas en
master.

» Desarrolladores: Trabajan en caracteristicas y correcciones de errores, creando ramas de
develop y fusionandolas de nuevo después de su finalizacion. Deben seguir los estandares de
codificacién y garantizar la calidad de su cédigo.

» Testers: Prueban los cambios de cédigo en las ramas feature y release antes de fusionarlos en
develop o master. Deben identificar y reportar cualquier error o problema encontrado durante
las pruebas.

Definicidon de Roles y Responsabilidades

Al igual que las ramas del repositorio anterior, la empresa por varios afios ha utilizado una estructura
simple de gestion de ramas la cual es branches para desarrolladores, trunk para qa y tags para
liberaciones en produccion. Teniendo presente ese enfoque, el personal actual y el flujo de los
procesos actuales de implementacion de cambios, mejoras o nuevos desarrollos se hace esta
definicién de roles en la nueva migracién.

¢ Mantenedores: Responsables de gestionar la rama master, asegurando su estabilidad y
calidad. Revisan las solicitudes de extraccién de la rama release antes de fusionarlas en
master. Este rol puede ser asumido por el lider técnico del mddulo o caracteristica que se va a
integrar.

Wiki - http://wiki.adacsc.co/

Last

;ggi;gil/ﬂ ada:howto:sicoferp:factory:new-migracion-sicoferp:repository http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:new-migracion-sicoferp:repository&rev=1713361865

13:51

» Desarrolladores: Trabajan en caracteristicas y correcciones de errores, creando ramas de
develop y fusionandolas de nuevo después de su finalizacién. Deben seguir los estandares de
codificacion y garantizar la calidad de su cédigo. Este rol es asignado a los desarrolladores que
realizaran la migracién.

» Testers: Prueban los cambios de cddigo en las ramas feature y release antes de fusionarlos en
develop o master. Deben identificar y reportar cualquier error o problema encontrado durante
las pruebas. Este rol es asumido por el equipo de QA.

Plantilla CI

This file is a template, and might need editing before it works on your
project.

To contribute improvements to CI/CD templates, please follow the
Development guide at:

https://docs.gitlab.com/ee/development/cicd/templates.html

This specific template is located at:

#
https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/G
etting-Started.gitlab-ci.yml

This is a sample GitLab CI/CD configuration file that should run without
any modifications.

It demonstrates a basic 3 stage CI/CD pipeline. Instead of real tests or
scripts,

it uses echo commands to simulate the pipeline execution.

#

A pipeline is composed of independent jobs that run scripts, grouped into
stages.

Stages run in sequential order, but jobs within stages run in parallel.
#

For more information, see:
https://docs.gitlab.com/ee/ci/yaml/index. html#stages

stages: # List of stages for jobs, and their order of execution
- build
- test
- deploy

build-job: # This job runs in the build stage, which runs first.
stage: build
script:
- echo "Compiling the code..."
- echo "Compile complete.”

unit-test-job: # This job runs in the test stage.

stage: test # It only starts when the job in the build stage completes
successfully.

script:

http://wiki.adacsc.co/ Printed on 2026/02/04 13:47

2026/02/04 13:47 5/5 Repositorio de Cédigo Fuente

- echo "Running unit tests... This will take about 60 seconds."
- sleep 60
- echo "Code coverage is 90%"
lint-test-job: # This job also runs in the test stage.
stage: test # It can run at the same time as unit-test-job (in
parallel).
script:
- echo "Linting code... This will take about 10 seconds."
- sleep 10

- echo "No lint issues found.

deploy-job: # This job runs in the deploy stage.
stage: deploy # It only runs when *both* jobs in the test stage complete
successfully.
script:
- echo "Deploying application..."
- echo "Application successfully deployed."

Conclusion

La adopcién de Gitlab como plataforma de gestidn de repositorios Git y el flujo de trabajo Gitflow para
la empresa ADA proporcionara una base sélida para el desarrollo de software eficiente, colaborativo y
escalable. Esta combinacién permitird a ADA gestionar su cédigo fuente de manera efectiva, mejorar
la colaboracién entre equipos y acelerar el desarrollo de productos.

«<Volver atras

From:
http://wiki.adacsc.co/ - Wiki

Permanent link:
http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:new-migracion-sicoferp:repository&rev=1713361865 .]
]

Last update: 2024/04/17 13:51

Wiki - http://wiki.adacsc.co/

http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory
http://wiki.adacsc.co/
http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:new-migracion-sicoferp:repository&rev=1713361865

	Repositorio de Código Fuente
	Gitlab: La Plataforma Elegida
	Flujo de Trabajo Gitflow: Estructurando el Desarrollo
	Beneficios de la Implementación
	Flujo de trabajo - GitFlow ADA
	Ramas
	Definición de ramas para la fábrica
	Roles y Responsabilidades
	Definición de Roles y Responsabilidades

	Plantilla CI
	Conclusión

