2026/02/04 10:38 1/3 Manifiesto de Codificacién para Desarrollos de Software - APls REST

Manifiesto de Codificacion para Desarrollos
de Software - APIs REST

Principios Generales:
1.Simplicidad y Claridad

El cdédigo debe ser facil de entender, sin sobrecomplicar los procesos. Evitar soluciones complejas
cuando una mas sencilla pueda ser efectiva.

2.Consistencia

El cédigo debe seguir convenciones y patrones consistentes para que sea mas facil de mantenery
comprender por otros desarrolladores. Las herramientas como linters y formateadores automaticos
son recomendables para mantener la consistencia.

3. Modularidad y Reusabilidad

El cédigo debe ser estructurado en médulos pequenos, reutilizables y faciles de probar. Las
funcionalidades comunes deben ser encapsuladas en servicios o bibliotecas reutilizables.

Estructura de la API:
1.Versionado de la API

Todas las APIs deben tener un esquema de versionado claro. Se recomienda incluir la versién en la
URL, como GET /api/v1/usuarios.

2.Uso de Métodos HTTP

Las APIs deben usar los métodos HTTP estandar de manera coherente:

GET: Para obtener datos.

POST: Para crear recursos.

PUT: Para actualizar recursos.
DELETE: Para eliminar recursos.

3.Codificaciéon de Respuestas HTTP
Las respuestas deben usar codigos de estado HTTP adecuados:

e 200 OK: Solicitud exitosa.

201 Created: Recurso creado.

204 No Content: Solicitud exitosa sin contenido.
400 Bad Request: Solicitud mal formada.

401 Unauthorized: Falta de autenticacién.

403 Forbidden: Prohibido.

404 Not Found: Recurso no encontrado.

500 Internal Server Error: Error del servidor.

4.Formato de Datos

Wiki - http://wiki.adacsc.co/



Last
update:
2024/12/09
22:20

ada:howto:sicoferp:factory:new-migracion-sicoferp:manifiestoback http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:new-migracion-sicoferp:manifiestoback&rev=1733782802

Las APIs deben usar JSON como formato de intercambio de datos.

Diseifio de Endpoints

1. Convenciones de Nombres

Los nombres de los endpoints deben ser coherentes y reflejar los recursos que representan:

e /usuarios (en plural para listas de recursos).
e /usuarios/{id} (para acceder a un recurso especifico).

2. Uso de Parametros en la URL y Query Parameters

Utiliza parametros de ruta (/usuarios/{id}) para recursos individuales y parametros de consulta
(/usuarios?edad=30) para filtrar, ordenar y paginar los resultados.

3. Manejo de Errores

Las APIs deben devolver errores de manera estandarizada. La respuesta debe incluir un cédigo de
estado HTTP adecuado y un cuerpo de respuesta con un mensaje descriptivo del error:

u]

Seguridad:
1. Autenticacién y Autorizacién

Las APIs deben requerir autenticacion a través de métodos seguros, como JWT (JSON Web Tokens) o
OAuth 2.0. No deben almacenarse credenciales en texto claro.

2. CORS (Cross-Origin Resource Sharing)

Las politicas de CORS deben ser configuradas para permitir el acceso seguro desde los origenes que
se necesiten, y se deben evitar configuraciones demasiado abiertas.

3. Proteccidn contra Inyecciones

Se deben aplicar medidas de seguridad como la validacién de entrada, uso de consultas
parametrizadas y escaneo de vulnerabilidades de inyeccidon SQL, XSS, CSRF, entre otros.

Documentaciodn:
1. Documentacion Automatica de la API

Las APIs deben estar documentadas usando herramientas como Swagger/OpenAPI para generar
documentacidn interactiva y siempre actualizada. Los endpoints, pardametros y respuestas deben
estar descritos claramente.

2. Comentarios en el Cédigo

Aunque el cddigo debe ser claro, los comentarios deben usarse para explicar “por qué” se hace algo,
no “qué” se hace, ya que el segundo debe ser evidente en un cédigo bien escrito.

Pruebas:

http://wiki.adacsc.co/ Printed on 2026/02/04 10:38



2026/02/04 10:38 3/3 Manifiesto de Codificacién para Desarrollos de Software - APls REST

1. Cobertura de Pruebas

Es fundamental que las APIs tengan una buena cobertura de pruebas unitarias, de integracion y de
aceptacion. Las pruebas deben ser automatizadas siempre que sea posible.

2. Pruebas de Seguridad

Las APIs deben ser sometidas a pruebas de seguridad regulares, como pruebas de penetracion y
revisiones de vulnerabilidades.

Manejo de Logs:
1. Uso de Logs

Las APIs deben registrar eventos importantes para facilitar la depuracioén y la auditoria. Los logs
deben contener informacién relevante pero no deben incluir informacién sensible como contrasefas o
tokens.

2. Niveles de Logs
Utilizar niveles adecuados para los logs, como:

DEBUG: Informacion detallada para depuracién. INFO: Informacién sobre el flujo normal de la
aplicacién. WARN: Advertencias de posibles problemas. ERROR: Errores que ocurren durante la
ejecucion.

Manejo de Logs:

1. Optimizacién de Consultas Se deben evitar consultas ineficientes que puedan causar cuellos de
botella. El uso de indices en las bases de datos y la paginacidn en respuestas con grandes volimenes
de datos es fundamental.

2. Escalabilidad

El disefio de la APl debe permitir una facil escalabilidad, tanto horizontal como vertical, utilizando
técnicas como la cacheizacion de resultados y la distribucién de carga.

«<Regresar

From:
http://wiki.adacsc.co/ - Wiki

Permanent link:

Last update: 2024/12/09 22:20

Wiki - http://wiki.adacsc.co/


http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:new-migracion-sicoferp:arquitectura_backend
http://wiki.adacsc.co/
http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:new-migracion-sicoferp:manifiestoback&rev=1733782802

	Manifiesto de Codificación para Desarrollos de Software - APIs REST

