2026/02/04 10:38 1/3 Manifiesto de Codificacién para Desarrollos de Software - APls REST

Manifiesto de Codificacion para Desarrollos
de Software - APIs REST

Principios Generales:
e Simplicidad y Claridad

El cdédigo debe ser facil de entender, sin sobrecomplicar los procesos. Evitar soluciones complejas
cuando una mas sencilla pueda ser efectiva.

¢ Consistencia

El cédigo debe seguir convenciones y patrones consistentes para que sea mas facil de mantenery
comprender por otros desarrolladores. Las herramientas como linters y formateadores automaticos
son recomendables para mantener la consistencia.

e Modularidad y Reusabilidad

El cédigo debe ser estructurado en médulos pequenos, reutilizables y faciles de probar. Las
funcionalidades comunes deben ser encapsuladas en servicios o bibliotecas reutilizables.

Estructura de la API:
¢ Versionado de la API

Todas las APIs deben tener un esquema de versionado claro. Se recomienda incluir la versién en la
URL, como GET /api/v1/usuarios.

¢ Uso de Métodos HTTP

Las APIs deben usar los métodos HTTP estandar de manera coherente:

GET: Para obtener datos.

POST: Para crear recursos.

PUT: Para actualizar recursos.
DELETE: Para eliminar recursos.

* Codificacion de Respuestas HTTP Las respuestas deben usar cédigos de estado HTTP adecuados:

e 200 OK: Solicitud exitosa.

201 Created: Recurso creado.

204 No Content: Solicitud exitosa sin contenido.
400 Bad Request: Solicitud mal formada.

401 Unauthorized: Falta de autenticacién.

403 Forbidden: Prohibido.

404 Not Found: Recurso no encontrado.

500 Internal Server Error: Error del servidor.

2.4 Formato de Datos Las APIs deben usar JSON como formato de intercambio de datos. Si se requiere
otro formato, debe ser explicitamente documentado.

Wiki - http://wiki.adacsc.co/



Last
update:
2024/12/09
20:38

ada:howto:sicoferp:factory:new-migracion-sicoferp:manifiestoback http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:new-migracion-sicoferp:manifiestoback&rev=1733776692

3. Disefio de Endpoints 3.1 Convenciones de Nombres Los nombres de los endpoints deben ser
coherentes y reflejar los recursos que representan:

Jusuarios (en plural para listas de recursos). /usuarios/{id} (para acceder a un recurso especifico). 3.2
Uso de Parametros en la URL y Query Parameters Utiliza parametros de ruta (/usuarios/{id}) para
recursos individuales y parametros de consulta (/usuarios?edad=30) para filtrar, ordenar y paginar los
resultados.

3.3 Manejo de Errores Las APIs deben devolver errores de manera estandarizada. La respuesta debe
incluir un cédigo de estado HTTP adecuado y un cuerpo de respuesta con un mensaje descriptivo del
error:

json Copiar cédigo {

"error": "Usuario no encontrado",
"message"”: "No se ha encontrado un usuario con el ID proporcionado",
"status": 404

} 4. Seguridad 4.1 Autenticacion y Autorizacidn Las APIs deben requerir autenticacién a través de
métodos seguros, como JWT (JSON Web Tokens) o OAuth 2.0. No deben almacenarse credenciales en
texto claro.

4.2 CORS (Cross-Origin Resource Sharing) Las politicas de CORS deben ser configuradas para permitir
el acceso seguro desde los origenes que se necesiten, y se deben evitar configuraciones demasiado
abiertas.

4.3 Proteccion contra Inyecciones Se deben aplicar medidas de seguridad como la validaciéon de
entrada, uso de consultas parametrizadas y escaneo de vulnerabilidades de inyeccién SQL, XSS,
CSRF, entre otros.

5. Documentacién 5.1 Documentacién Automatica de la API Las APIs deben estar documentadas
usando herramientas como Swagger/OpenAPI para generar documentacién interactiva y siempre
actualizada. Los endpoints, parametros y respuestas deben estar descritos claramente.

5.2 Comentarios en el Codigo Aunque el cédigo debe ser claro, los comentarios deben usarse para
explicar “por qué” se hace algo, no “qué” se hace, ya que el segundo debe ser evidente en un cddigo
bien escrito.

6. Pruebas 6.1 Cobertura de Pruebas Es fundamental que las APIs tengan una buena cobertura de
pruebas unitarias, de integracion y de aceptacion. Las pruebas deben ser automatizadas siempre que
sea posible.

6.2 Pruebas de Seguridad Las APIs deben ser sometidas a pruebas de seguridad regulares, como
pruebas de penetracién y revisiones de vulnerabilidades.

7. Manejo de Logs 7.1 Uso de Logs Las APIs deben registrar eventos importantes para facilitar la
depuracion y la auditoria. Los logs deben contener informacién relevante pero no deben incluir
informacidn sensible como contrasefias o tokens.

7.2 Niveles de Logs Utilizar niveles adecuados para los logs, como:

DEBUG: Informacion detallada para depuracién. INFO: Informacidn sobre el flujo normal de la

http://wiki.adacsc.co/ Printed on 2026/02/04 10:38



2026/02/04 10:38 3/3 Manifiesto de Codificacién para Desarrollos de Software - APls REST

aplicacién. WARN: Advertencias de posibles problemas. ERROR: Errores que ocurren durante la
gjecucién. 8. Desempefio 8.1 Optimizacién de Consultas Se deben evitar consultas ineficientes que
puedan causar cuellos de botella. El uso de indices en las bases de datos y la paginacién en
respuestas con grandes volimenes de datos es fundamental.

8.2 Escalabilidad El disefio de la APl debe permitir una facil escalabilidad, tanto horizontal como
vertical, utilizando técnicas como la cacheizacién de resultados y la distribucién de carga.

«<Regresar

From:
http://wiki.adacsc.co/ - Wiki

Permanent link:

Last update: 2024/12/09 20:38

Wiki - http://wiki.adacsc.co/


http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:new-migracion-sicoferp:arquitectura_backend
http://wiki.adacsc.co/
http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:new-migracion-sicoferp:manifiestoback&rev=1733776692

	Manifiesto de Codificación para Desarrollos de Software - APIs REST

