2026/02/07 00:44 1/4

Integracion continua Front
1) Preparar ambientes en front.

Se crean 4 ambientes (environment) dentro de la MFSicof (Local, Dev, QA, Prod). Dentro de ellos se
ejecutan los comandos correspondientes de ambiente:

Dev: npm run build:dev QA: npm run build:ga Prod: npm run build:prod Local es el definido por
defecto si no se le coloca un ambiente y se deja tal cual:

Local: npm run start o npm start
2) Preparar Docker. Construir la imagen Docker:
e docker build -build-arg TYPE=qa -t mfsicof .

Nota: TYPE cambia en los pipelines de despliegue en Jenkins dependiendo del ambiente que apunte.
Las opciones son dev, ga y prod.

Ejecutar el contenedor Docker:
e docker run -d -p 80:80 mfsicof
Nota: Se define el puerto, donde el primero es el externo y el segundo es el interno del contenedor.
Al hacer Docker Build se ejecuta la siguiente receta:
Usa una imagen base de Node.js
FROM node:20-alpine AS build-step
Establecer el limite de memoria para Node.js
ENV NODE_OPTIONS=-max_old_space_size=4096
ARG TYPE
Crea un directorio /app en la imagen
RUN mkdir -p /app
Establece el directorio de trabajo
WORKDIR /app
Copia los archivos de tu proyecto al directorio de trabajo
COPY package.json /app
Instala las dependencias del proyecto
RUN npm install

Copia el resto de los archivos de tu proyecto al directorio de trabajo

Wiki - http://wiki.adacsc.co/

Last
update:
2024/06/24
12:23

ada:howto:sicoferp:factory:new-migracion-sicoferp:front:iac http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:new-migracion-sicoferp:front:iac&rev=1719231784

COPY . /app

Construye la aplicacién Angular

RUN npm run build:${TYPE}

Configura la imagen de produccién de Nginx

FROM nginx:alpine

Copia los archivos generados de la compilacion de Angular a la carpeta de Nginx
COPY -from=Dbuild-step /app/dist/mfsicof /usr/share/nginx/html

Expone el puerto 80 para que se pueda acceder a la aplicacion desde el navegador
EXPOSE 80

Comando para iniciar Nginx cuando se ejecute el contenedor

CMD [“nginx”, “-g", “daemon off;"]

3) Crear proyecto en GitLab.

Se crea un proyecto en GitLab con el siguiente repositorio:
http://10.1.140.120/ada-microservices-ecosystem/frontends/mfsicof.qgit

Se crea un webhook para el frontend con la siguiente URL:
Para clonar el proyecto una vez tengas permisos de Git:

code git clone http://10.1.140.120/ada-microservices-ecosystem/frontends/mfsicof.git Para instalar el
ambiente se recomienda consultar la guia de primeros pasos.

Se recomienda consultar la guia de flujo Git.
4) Preparar Jenkins.

Adicional a la configuracién de contenedores para Jenkins es necesario instalar jg. jq es una
herramienta de linea de comandos para procesar J[SON. Asegurate de que esté instalada en el sistema
donde Jenkins esta ejecutando el script. En sistemas basados en Debian/Ubuntu, puedes instalar jq
con:

sudo apt-get install jq

Configurar el Script en Jenkins:

Accede a la configuracion del proyecto en Jenkins.

En la seccién “Build”, afiade o edita el paso “Execute shell”.
Copia y pega el script anterior en el campo de texto del shell.
Guardar y Probar:

Guarda la configuracién del proyecto.

NouswnhH

5.1 Acceder a Jenkins: Inicia sesidn en tu instancia de Jenkins.

http://wiki.adacsc.co/ Printed on 2026/02/07 00:44

http://10.1.140.120/ada-microservices-ecosystem/frontends/mfsicof.git
http://10.1.140.120/ada-microservices-ecosystem/frontends/mfsicof.git

2026/02/07 00:44 3/4

5.2 Crear un nuevo proyecto: Ve a “New Item”. Selecciona “Freestyle project” y da un nombre a tu
proyecto. Haz clic en “OK".

5.3 Configurar el repositorio Git: En la seccién “Source Code Management”, selecciona “Git”".
Ingresa la URL de tu repositorio GitLab y las credenciales necesarias.

5.4 Configurar el webhook de GitLab:

e En GitLab, ve a tu proyecto.

* Navega a “Settings” > “Webhooks".

¢ Afade una nueva URL de webhook apuntando a tu Jenkins (e.g.,
http://your-jenkins-url/gitlab-webhook//). * Selecciona los eventos que deseas que disparen el
webhook, como “Push events”. 5.5 Ahadir un paso de ejecucion de shell: * En la seccion
“Build”, haz clic en “Add build step” y selecciona “Execute shell”. Copia y pega el siguiente
script: # Definir la URI del host Docker DOCKER_HOST URI="tcp:172.17.0.1:2375"

Exportar la variable DOCKER_HOST

export DOCKER_HOST=$DOCKER_HOST _URI

Extraer la version y el nombre del archivo package.json

TAG_NAME=$(jq -r '.version' package.json) NAME=$(jq -r '.name' package.json)

Modificar el nombre para insertar un guion después de 'mf'
CONTAINER_NAME=$(echo $NAME | sed 's/”mf/mf-/')

Quitar el guion del nombre del repositorio

REPOSITORY _NAME="ecosystemuser/${NAME}"

Imprimir los nombres para visualizacion

echo “REPOSITORY_NAME: $REPOSITORY_NAME"” echo “CONTAINER_NAME: $CONTAINER_NAME"
Construir la imagen Docker con el argumento de construccion

docker build -no-cache -build-arg TYPE=prod -t $REPOSITORY_NAME:$TAG_NAME .

Etiquetar la imagen con latest

docker tag $REPOSITORY _NAME:$TAG_NAME $REPOSITORY NAME:latest

Empujar la imagen con la etiqueta latest a Docker Hub

docker push $REPOSITORY_NAME:$TAG_NAME docker push $REPOSITORY_NAME:|atest

if [“$(docker ps -aq -f name=$CONTAINER_NAME)" |; then

docker stop $CONTAINER NAME
docker rm -fv $CONTAINER NAME

fi

Wiki - http://wiki.adacsc.co/

Last

;ggi}g%/u ada:howto:sicoferp:factory:new-migracion-sicoferp:front:iac http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:new-migracion-sicoferp:front:iac&rev=1719231784
12:23

Ejecutar el nuevo contenedor con la imagen “latest”

docker run -d -p 8095:80 -name $CONTAINER_NAME $REPOSITORY_NAME:|atest

«Regresar

From:
http://wiki.adacsc.co/ - Wiki

Permanent link:

Last update: 2024/06/24 12:23

http://wiki.adacsc.co/ Printed on 2026/02/07 00:44

http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:new-migracion-sicoferp:front
http://wiki.adacsc.co/
http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:new-migracion-sicoferp:front:iac&rev=1719231784

