2026/02/04 19:18 1/4 Configuracidn libreria encriptaciéon

Configuracion libreria encriptacion

Esta libreria funciona como un repositorio centralizado de componentes, permitiendo compartir y
reutilizar elementos visuales de manera consistente en todas las aplicaciones. Al mantener un
sistema de disefo unificado, garantiza la coherencia visual y mejora la eficiencia del desarrollo,
reduciendo la duplicacién de cédigo y simplificando el mantenimiento de la interfaz de usuario.

Uso

Para comenzar, sigue estos pasos:
« Instale la libreria de npm crypto-js Enlace a la libreria
npm i crypto-js

e Crea un archivo .npmrc en la raiz del proyecto, el cual va a contener la configuracion para
instalacién de la libreria alojada en Nexus Repository.

» Agregue la dependencia al archivo package.json (Recuerde verificar la version actual de
la libreria) e instale las dependencias.

"crypto-util-library":
"http://10.1.40.130:8081/repository/npm-hosted/crypto-util-library/-/crypto-
util-library-1.0.0.tgz"

e Crea un servicio para centralizar y gestionar la encriptacion y desencriptacién de datos,
utilizando los métodos proporcionados por la libreria crypto-util-library. Esto facilita la
reutilizacion del cédigo y garantiza un manejo seguro y consistente de la informacién en toda la
aplicacién.

import { CryptoUtil } from 'crypto-util-library';

decryptResponse(data: any) {
return this.cryptoUtil.decryptObject(data);

}

encryptData(data: any) {
return this.cryptoUtil.encryptObject(data);

}

e Configura un interceptor encargado de la encriptacidn y desencriptacion de los datos en las
solicitudes HTTP. Este interceptor recibe como parametro un archivo de configuracién que
permite definir una lista de URLs excluidas, en las cuales no es necesario aplicar estos
procesos. De esta manera, se optimiza el rendimiento y se garantiza que solo las
comunicaciones sensibles sean protegidas mediante encriptacion.

Wiki - http://wiki.adacsc.co/


https://www.npmjs.com/package/crypto-js

Last
;022581/29 ada:howto:sicoferp:factory:new-migracion-sicoferp:front:configuracion-libreria-encriptacion http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:new-migracion-sicoferp:front:configuracion-libreria-encriptacion&rev=1738169845

16:57

Interceptor

import { CryptoConfig } from './crypto.config"';
import { CryptoUtilLibraryService } from '../services/crypto-util-
library.service';

export const cryptolnterceptorinterceptor = (config: CryptoConfig): HttpinterceptorFn =

(request, next) => {
// Inyecta el servicio de encriptacién y desencriptacién
const cryptoService = inject(CryptoUtilLibraryService);
// Verifica si la URL de la solicitud debe excluirse del proceso de
encriptaciodn/desencriptacidn
const shouldSkip = config.excludedUrls.some(url =>
request.url.includes(url)
);
if (shouldSkip) {
return next(request); // Si la URL esta excluida, continta la solicitud
sin modificaciones
}
// Si la solicitud tiene un cuerpo, se procede a encriptarlo antes de
enviarlo
if (request.body) {
return from(cryptoService.encryptData(request.body)).pipe(
switchMap(encryptedBody => {
// Clona la solicitud con el cuerpo encriptado
const clonedRequest = request.clone({ body: encryptedBody });
return next(clonedRequest) .pipe(
switchMap(event => {
// Si la respuesta es un HttpResponse y tiene un cuerpo, se
desencripta
if (event instanceof HttpResponse && event.body) {
const decryptedBodyPromise =
cryptoService.decryptResponse(event.body);
return from(decryptedBodyPromise).pipe(
map (decryptedBody => event.clone({ body: decryptedBody }))
)i
}
return [event];
}),
catchError(error => {
// Si ocurre un error y contiene un cuerpo, se intenta
desencriptar el mensaje de error
if (error instanceof HttpErrorResponse && error.error) {
const decryptedErrorPromise =
cryptoService.decryptResponse(error.error);
return from(decryptedErrorPromise).pipe(
switchMap(decryptedError => {
// Clona el error con el mensaje desencriptado

http://wiki.adacsc.co/ Printed on 2026/02/04 19:18



2026/02/04 19:18 3/4 Configuracidn libreria encriptaciéon

const clonedError = new HttpErrorResponse({
...error,
error: decryptedError,
url: error.url ?? undefined
})s
return throwError(() => clonedError);
})
);
}
return throwError(() => error); // Si no es un error encriptado,
lanza el error original

})

})
i
}
// Si la solicitud no tiene un cuerpo, solo se maneja la desencriptacidn
de la respuesta
return next(request).pipe(
switchMap(event => {
if (event instanceof HttpResponse && event.body) {
const decryptedBodyPromise =
cryptoService.decryptResponse(event.body);
return from(decryptedBodyPromise).pipe(

map (decryptedBody => event.clone({ body: decryptedBody }))

);
}
return [event];

1),
catchError(error => {
if (error instanceof HttpErrorResponse && error.error) {
const decryptedErrorPromise =
cryptoService.decryptResponse(error.error);
return from(decryptedErrorPromise).pipe(
switchMap(decryptedError => {
const clonedError = new HttpErrorResponse({
...error,
error: decryptedError,
url: error.url ?? undefined

});
return throwError(() => clonedError);
})
);
¥
return throwError(() => error);
})
)
J; 2
<Regresar

Wiki - http://wiki.adacsc.co/


http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:new-migracion-sicoferp:front

Last
;032581/29 ada:howto:sicoferp:factory:new-migracion-sicoferp:front:configuracion-libreria-encriptacion http://wiki.adacsc.co/doku.php?id= :howto:sicoferp:factory:| igracion-sicoferp:front:configuracion-libreria-encriptacion&rev=1738169845
16:57

From:
http://wiki.adacsc.co/ - Wiki

Permanent link:
http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:new-migracion-sicoferp:front:configuracion-libreria-encriptacion&rev=1738169845

Last update: 2025/01/29 16:57

http://wiki.adacsc.co/ Printed on 2026/02/04 19:18


http://wiki.adacsc.co/
http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:new-migracion-sicoferp:front:configuracion-libreria-encriptacion&rev=1738169845

	Configuración librería encriptación
	Uso
	Interceptor



