
2026/02/04 18:37 1/9 Fábrica - Modelos Logs - Log de Transacciones

Wiki - http://wiki.adacsc.co/

Fábrica - Modelos Logs - Log de
Transacciones

Este es el log utilizado para registrar los logs en las transacciones de modificación de información de
los procesos de las aplicaciones.

Tipos de Transacciones

A continuación se listan los tipos de transacciones que deben ser considerados en el log.

Inserciones de datos.
Actualizaciones de datos.
Eliminación de datos.

¿Donde usar el Servicio?

Este servicio debe consumirse en los procesos de cargas de:

Aplicaciones Java
Aplicaciones .Net
Web Service
Aplicaciones Móbiles
Aplicaciones Powerbuilder (Ver Nota siguiente)
Soluciones que afecten los productos SICOF

Nota: Aplicaciones Powerbuilder

Powerbuilder tiene restricciones para el consumo de servicios Rest por lo tanto en las aplicaciones de
esta tecnología se implementará un API para realizar las llamadas.

Diccionario de Datos

OWNER SICOF TABLE TRANSACTIONAL_LOG COMMENTS

Contiene el log
de
transacciones
de las
aplicaciones de
la compañia

NAME NULLEABLE TYPE COMMENTS WS1)

1 ID N NUMBER

Código
interno del
registro (Se
controla por
secuencia)

Interno,
Autoincremental

Last
update:
2021/09/20
13:14

ada:howto:sicoferp:factory:logmodels:transaccionallog http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:logmodels:transaccionallog&rev=1632143680

http://wiki.adacsc.co/ Printed on 2026/02/04 18:37

2 FECHA Y DATE
Fecha en la
cuál se
genera la
transacción

No utilizado

3 NOMBRE_PROCESO Y VARCHAR2(256)
Nombre del
proceso que
realiza la
transacción

Externo,
Requerido

4 TIPO_TRANSACCION Y VARCHAR2(256)

Identifica el
tipo de
operación
(Insert,
Select,
Update,
Delete,
Execute)

Externo,
Requerido

5 LOG_TABLA Y VARCHAR2(256) Nombre de
la Tabla

Externo,
Requerido

6 LOG_COLUMNA Y VARCHAR2(256) Nombre de
la columna

Obsoleto,
Externo

7 LOG_VALOR_ANT Y VARCHAR2(4000)
Valor
anterior de
la columna

Obsoleto,
Externo,
Requerido

8 LOG_VALOR_ACT Y VARCHAR2(4000)
Valor actual
de la
columna

Obsoleto,
Externo

9 LOG_PETICION Y CLOB

Se utiliza en
caso de ser
necesario
para
almacenar el
bloque de la
petición
completa
realizada

Externo,
Requerido

10 LOGIN_USUARIO Y VARCHAR2(256)
Login del
usuario que
realiza el
proceso

Externo,
Requerido

11 HOST_CLIENTE Y VARCHAR2(50)
Host del
cliente
(Dirección IP)

Externo,
Requerido

12 FECHA_REGISTRO Y DATE Fecha del
sistema DB

Interno,
Formato
dd/mm/yyyy
hh:mm:ss,
Requerido

13 CODIGO_USUARIO Y NUMBER

Código del
usuario de la
sesión en la
cuál se
genera el
error

Externo,
Requerido

2026/02/04 18:37 3/9 Fábrica - Modelos Logs - Log de Transacciones

Wiki - http://wiki.adacsc.co/

14 CODIGO_MEMPRESA Y VARCHAR2(64)

Código de la
empresa de
la sesión en
la cuál se
genera el
error

Externo,
Requerido

15 CODIGO_APLICACION Y NUMBER

Código de la
aplicación
(Identificador
interno
numérico)

Externo,
Requerido

16 INFO_APP Y VARCHAR2(256)

Información
de la
aplicación
(En las
situaciónes
donde no se
identifique
código
interno se
puede enviar
el nombre de
la aplicación
o
información
adicional)

Externo

17 SESSION_MAC Y VARCHAR2(64)
MAC del
equipo del
usuario

Externo

18 SESSION_BROWSERVERSION Y VARCHAR2(64) Versión del
Navegador

Externo,
Requerido

19 SESSION_OSTYPE Y VARCHAR2(64) Sistema
Operativo

Externo,
Requerido

Columna: WS

Se adiciona esta columna para identificar reglas asociadas a la implementación de los servicios web
que permiten gestionar el almacenamiento de los logs. La columna es una referencia y no hace parte
del servicio sin embargo las reglas que se definen en ella si aplican para la columna relacionada:

Reglas

Interno: Indica que el campo se gestiona dentro del servicio y por lo tanto no se pedira en los
parametros.
Autoincremental: Indica que el campo se comporta como una secuencia.
Externo: Indica que el campo debe estar en los parametros del consumo.
Requerido: Indica que el campo debe ser enviado en el consumo y el servicio debe validarlo
para continuar.
Obsoleto: Indica que el campo ya no es utilizado en la nueva implementación.
No utilizado: Indica que el campo no será utilizado en ninguna implementación.

Last
update:
2021/09/20
13:14

ada:howto:sicoferp:factory:logmodels:transaccionallog http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:logmodels:transaccionallog&rev=1632143680

http://wiki.adacsc.co/ Printed on 2026/02/04 18:37

Nota

Todas las operaciones del servicio que gestiona la persistencia de la tabla deben estar
documentadas incluyendo la definición de los campos, formatos, longitudes de columnas e
indicar si es requerido o no.

Columna: LOG_PETICION

Esta columna sirve para almacenar la información de la peticion2) que se realiza en el registro que va
a la base de datos. Se define la siguiente estructura base ejemplo:

{
 "columns":[
 {
 "column_name":"Requerido: Nombre de la columna",
 "column_old_value": "Valor anterior de la columna",
 "column_new_value": "Valor actual de la columna"
 }
]
}

Donde:

columns: Arrya de Columnas en la transacción
column_name: Propiedad contenida en cada indice del array json que representa el nombre de
la columna en la transacción.
column_old_value: Propiedad contenida en cada indice del array json que representa el valor
anterior de la columna en la transacción (Requerida para operaciones Update, Delete).
column_new_value: Propiedad contenida en cada indice del array json que representa el valor
actual de la columna en la transacción (Requerida para operaciones Insert, Update).

Ejemplo:

{
 "columns":[
 {
 "column_name":"codigo_tercero",
 "column_old_value": "1234",
 "column_new_value": "3456"
 },
 {
 "column_name":"valor_debito",
 "column_old_value": "0",
 "column_new_value": "100000"
 }
]
}

2026/02/04 18:37 5/9 Fábrica - Modelos Logs - Log de Transacciones

Wiki - http://wiki.adacsc.co/

Notas

Los valores de las columnas deben ser registrados como String

Modo de uso: Powerbuilder - Documentación

Para visualizar la documentación debe descargar el siguiente repositorio Documentación, abrir la
pagina Index.html en su navegador web la cual es similar a la siguiente imagen:

En ella encontrará la documentación de las librerias que hacen parte del framework Objetos SICOF
el cuál se irá actualizando frecuentmente a medida que se documenten las clases.

La Libreria que contiene la funcionalidad de los logs es la librería sf00util.pbl

Los Objetos relacionados en el API son:

n_cst_app: Clase contenedora de objetos logs
n_cst_log_transactional: Clase para la gestión de log de transacciones

Ejemplos de Uso

Para facilitar la implementación y uso del API de gestión de log de transacciones se crea un objeto
interno privado en la clase global guo_app el cual puede ser accedido por el método
of_log_transactional() que devuelve la instancia del objeto. Sin embargo para implementaciones
específicas se puede optar por crear y administrar la clase n_cst_log_transactional según considere
el desarrollador.

A continuación se listan ejemplos de uso el cuál presenta las forma de utilizar el API, para más
información debe consultar la documentación en el repositorio.

/*Ejemplos de uso utilizando la instancia genérica de la clase guo_app*/
guo_app.of_log_transactional().of_add_log(f_hoy(), "Causación por

http://adacsc.co:1443/svn/repository/ADA/SICOF/Objetos%20SICOF/FUENTES/branches/branches%2012.5.2.5.0/doc/documentacion

Last
update:
2021/09/20
13:14

ada:howto:sicoferp:factory:logmodels:transaccionallog http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:logmodels:transaccionallog&rev=1632143680

http://wiki.adacsc.co/ Printed on 2026/02/04 18:37

Plantilla", "Update", "PRESUP01.MAESTRO_ASIENTO_CONTABLE", "codigo_tercero",
"0", "6949", true, SQLCA)
guo_app.of_log_transactional().of_add_log(f_hoy(), "Causación por
Plantilla", "Update", "PRESUP01.MAESTRO_ASIENTO_CONTABLE", ljson, true,
SQLCA)

/*Ejemplo de uso definiendo la clase*/
n_cst_log_transactional luo_log_transactional
luo_log_transactional = Create n_cst_log_transactional
luo_log_transactional.of_add_log(f_hoy(), "Causación por Plantilla",
"Update", "PRESUP01.MAESTRO_ASIENTO_CONTABLE", ljson, true, SQLCA)
destroy luo_log_transactional

Consideraciones

El API puede ser activada o desactivada por medio de la constante: LOG_TRANSACCIONAL
(Solo en aplicaciones SICOF ERP (Appeon/Powerbuilder)) siempre y cuando se utilice la
implementación de la clase guo_app.
El desarrollador es el encargado de gestionar la transacción que realiza la persistencia.
Para el procesamiento de logs de bloques se implementa Clase sailjson para procesamiento de
cadenas de texto en ese formato.
Cada módulo (Contabilidad, Prespuesto, Tesorería, Compras, Talento y Nómina) debe
implementar el método de inicialización guo_app.of_init_logs(SQLCA) en el método
of_process_step_init_transaction de la clase guo_app especializada por cada módulo. A
continuación se muestra una imagen de referencia de la implementación del módulo de
presupuesto. Utilice esta guía para implementaciones en otros módulos teniendo presente que
la clase n_cst_app se especializa con el nombre de la aplicación que la contiene. Ejemplo: en
presupuesto la clase especializada es n_cst_app_presupuesto, por lo general la clase esta en
la libreria principal que contiene el objeto Application.

2026/02/04 18:37 7/9 Fábrica - Modelos Logs - Log de Transacciones

Wiki - http://wiki.adacsc.co/

API Json

Se adicionan métodos de procesamiento de bloques en formato json los cuales pueden ser utilizados
para registrar trazas de error a continuación se muestran ejemplos de uso del API.

sailjson ljson, ljson1
String ls_content

ljson = create sailjson
ljson.setattribute('version', '1001')
//add json object
ljson1 = ljson.addobject('header')
ljson1.setattribute('count', 3)
ljson1.setattribute('comment', 'items count')

//add json object array, first item
ljson1 = ljson.addarrayitem('data')
ljson1.setattribute('colid', 1)
ljson1.setattribute('colname', 'aaaaaa')
ljson1.setattribute('coladdr', '')
//add second item of the array
ljson1 = ljson.addarrayitem('data')
ljson1.setattribute('colid', 2)
ljson1.setattribute('colname', 'bbbbbbbb')
setnull(ls)
ljson1.setattribute('coladdr', ls)
//add third item of the array
ljson1 = ljson.addarrayitem('data')
ljson1.setattribute('colid', 3)
ljson1.setattribute('colname', 'cccccc')

ljson.setattribute('creattime', string(now(), 'yyyymmdd.hhmmss'))

ls_content = ljson.getformatjson('')
destroy ljson

Limitaciones

Se identifica que actualmente la versión de Appeon (2013/2016) presenta problemas con el
procesamiento del API Json para estructuras complejas como Arrays por esta razon cada
procesamiento del API debe ser realizado a un solo nivel de complejidad por cada registro que realice
operaciones DML. A continuacion se muestra un ejemplo de uso funcional en Appeon/Powerbuilder
que puede ser tomado como referencia.

/*PASO 1: Definir un objeto de la clase sailjson en la zona de instancia del
componente donde se va utilizar el API como una ventana, objeto no visual,
etc*/
sailjson iuo_json

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

Last
update:
2021/09/20
13:14

ada:howto:sicoferp:factory:logmodels:transaccionallog http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:logmodels:transaccionallog&rev=1632143680

http://wiki.adacsc.co/ Printed on 2026/02/04 18:37

/*PASO 2: Incializar el objeto iuo_json antes de utilizarlo*/
iuo_json= create sailjson

/*
PASO 3: No es obligatorio, pero se recomienda crear un método local de
asignación para simplificar el proceso como ejemplo se define metodo
of_add_log_transactional con los siguientes argumentos
string as_dataobject
string as_column
string as_old_value
string as_new_value
*/

//Validaciones previas de control
if IsNull(as_dataobject) then return
if IsNull(as_column) then return
if IsNull(as_old_value) then as_old_value = ""
if IsNull(as_new_value) then as_new_value = ""

//Crear propiedad de la columna con el valor anterior
iuo_json.setattribute(as_dataobject + "." + as_column + "_OldValue",
as_old_value)

//Crear propiedad de la columna con el nuevo valor
iuo_json.setattribute(as_dataobject + "." + as_column + "_NewValue",
as_new_value)

//En el metodo de guardado del proceso consumir el API de Log de
transacciones con el objeto json
guo_app.of_log_transactional().of_add_log(Date(ldt_fecha),
"w_conexion_cliente_fe::guardar", "update", 'TBL_FE_CONEXION_CLIENTE',
iuo_json, true, ts_transaccion)

//Por último se debe reiniciar el componente para otro proceso
iuo_json = Create sailjson

Modo de uso: Java

Para las aplicaciones desarrolladas en las tecnologías (Web):

Java
.Net
PHP

el log de sesión será implementado por medio de un Servicio Web el cual deberá considerar las reglas
de Columna: WS

←Volver atras

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+date
http://10.1.20.89/doku.php?id=ada:howto:sicoferp:factory:integrations:logs
http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:logmodels

2026/02/04 18:37 9/9 Fábrica - Modelos Logs - Log de Transacciones

Wiki - http://wiki.adacsc.co/

1)

Define las reglas que debe aplicar el Web Service
2)

Valores anteriores y Actuales según corresponda

From:
http://wiki.adacsc.co/ - Wiki

Permanent link:
http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:logmodels:transaccionallog&rev=1632143680

Last update: 2021/09/20 13:14

http://wiki.adacsc.co/
http://wiki.adacsc.co/doku.php?id=ada:howto:sicoferp:factory:logmodels:transaccionallog&rev=1632143680

	Fábrica - Modelos Logs - Log de Transacciones
	Tipos de Transacciones
	¿Donde usar el Servicio?
	Nota: Aplicaciones Powerbuilder

	Diccionario de Datos
	Columna: WS
	Reglas
	Nota

	Columna: LOG_PETICION
	Notas

	Modo de uso: Powerbuilder - Documentación
	Ejemplos de Uso
	Consideraciones
	API Json
	Limitaciones

	Modo de uso: Java

